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Adaptive Terminal Guidance for Hypervelocity
Impact in Specified Direction
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The problem of guiding a hypersonic gliding vehicle in the terminal phase to a target location is considered. In
addition to the constraints on its final position coordinates, the vehicle must also impact the target from a speci-
fied direction with very high precision. The proposed three-dimensional guidance laws take simple proportional
forms. The analysis establishes that with appropriately selected guidance parameters the three-dimensional guided
trajectory will satisfy these impact requirements. We provide the conditions for the initial online selection of the
guidance law parameters for the given impact direction requirement. The vehicle dynamics are explicitly taken
into account in the realization of guidance commands. To ensure high accuracy in the impact angle conditions in
an operational environment, we develop closed-loop nonlinear adaptation laws for the guidance parameters. We
present the complete guidance logic and associated analysis. Simulation results are provided to demonstrate the
effectiveness and accuracy of the proposed terminal guidance approach.

I.

ECENT interests in developing on-demand global-reach pay-

load delivery capability have brought to the forefront a num-
ber of underlying technological challenges. Such operations will
involve responsive launch, autonomous entry flight, and precision
terminal maneuvers. In certain scenarios the mission requirements
call for the payload to impact the target location from a specific
direction with supersonic speed. One example is to impact the tar-
get in a direction perpendicular to the tangent plane of the terrain
at the target. The terminal guidance system will be responsible for
directing the vehicle to the target and achieving the desired impact
direction. The impact precision requirements under the scenarios
considered are very high and stringent. For instance, the required
circular error probable (CEP) of the impact distance is just 3 m
(Ref. 1). The errors of the impact angles are desired to be within
0.5 deg. The very high speeds throughout the terminal phase only
make it considerably more difficult to achieve these levels of pre-
cision. Yet cost considerations dictate that the terminal guidance
algorithm should be relatively simple and computationally tractable
for real-time operations.

Although a number of guidance methods can guide the vehicle
to the target, not many address the unique need for impact from a
specific direction. One method that can is the so-called “dive-line”
guidance approach in Ref. 2. In this method one or more lines in-
tersecting the Earth are established. The final dive line intersects
the target, and its direction can be set to the desired direction. The
vehicle’s velocity vector is then steered toward the dive lines by a
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cross-product guidance law. Another guidance method discussed in
Ref. 3 fits a single-segment cubic spline between the current vehicle
position and the target location, assuming that the vehicle’s motion
is constrained to lie in a vertical plane. The value of the final flight-
path angle is one of the parameters that are used to define the cubic
spline. The vehicle then is guided to follow this cubic curve. Under
the assumption of perfect tracking, the final flight-path angle will be
asrequired. (There is, however, no mechanism to control the azimuth
of the final trajectory of the vehicle.) Yet the numerical experiments
reported in Ref. 4 suggest that the accuracy of these two methods
would not be adequate for our current applications. Under the lin-
earization approximation, a planar engagement problem with a final
impact angle constraint is formulated as a numerical optimal control
problem in Ref. 5, where the impact angle constraint is treated as a
penalty term. Aside from the linearization limitations, it is not clear
how realistic the computation requirements will be for such a purely
numerical approach in the current applications we are considering,
especially when the problem has to be solved in three-dimensional
motion. Two-dimensional intercept with a final impact angle con-
straint is again the subject of Ref. 6. The key assumptions necessary
for the analytical solution obtained therein are constant velocity and
small error angles. With these conditions a time-varying bias term
is added in a proportional-navigation guidance law to achieve the
final impact angle condition. The constant velocity approximation is
completely invalid in our current applications, because the velocity
can have variations up to 60% and more.

We propose an adaptive guidance approach for the preceding
problem in a proportional-navigation form. An earlier, nonadaptive
version of the guidance law in the horizontal plane is analyzed in
Ref. 7. In this paper we present the guidance law in the vertical di-
rection, thus extending the approach to three-dimensional flight. We
provide the analysis to establish the achievement of impact on the
target by the three-dimensional guided trajectory. Unlike many other
guidance approaches, we do not rely on approximations such as con-
stant velocity or linearization. The guidance method can guide the
vehicle to the target from any initial conditions in three-dimensional
space within the maneuvering capability of the vehicle. Further-
more, the properties of the guided trajectory discovered in the anal-
ysis allow us to conveniently devise guidance logic and guidance
parameter selection criteria to meet the impact direction require-
ment. These guidance parameters are further updated by closed-loop
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nonlinear adaptation laws to ensure high precision in the impact an-
gle conditions. In this paper the word “adaptive/adaptation” is used
in the context of continuously updating certain gains in a closed-
loop fashion to ensure that some specified targeting conditions are
accurately achieved. No estimates of unknown system parameters
are involved as in a conventional adaptive control setting.

The efficacy of the proposed approach is demonstrated by the
simulations of the trajectories of a hypersonic maneuvering vehicle.
The terminal conditions are all met with a high degree of accuracy.
Comparison with optimal solutions reveals interestingly that when
the final heading angle is free, the guided trajectories and guidance
commands exhibit behaviors that are quite close to those of the
optimal trajectories.

II. Analysis of Guidance Laws

For development purposes, an Earth-fixed coordinate system is
defined to be as shown in Fig. 1. The target is at the origin of the
coordinate system. We will focus on a fixed target in the following
discussion, although most of the development would be applicable
to a mobile target if the motion variables in the subsequent sections
are replaced by those for the relative motion between the vehicle
and the target. The x axis is pointed to the east, the y axis to the
north, and the z axis completes the right-hand system. The line-of-
sight (LOS) from the target to the vehicle is defined by the azimuth
angle 6 and elevation angle ¢, where —m <6 < is measured from
positive x axis in a counterclockwise direction and 0 <¢ < /2.
These angles can be calculated from the known coordinates of the
target and navigation-derived coordinates of the vehicle.

The standard three-dimensional equations of motion of a gliding
vehicle over a flat Earth can be found in, for instance, Ref. 8:

x = Vcosysiny (1)
y =V cosycosy 2)
z=Vsiny 3)
. D )
V=———gsiny “4)
m
L
y=—"2 —Lcosy )
. Lsino
V=—"- (6)
mV cosy

where the position coordinates are x, y, and z. The Earth-relative ve-
locity is V. The flight-path angle y is the angle between the relative
velocity vector and the horizontal plane. The vehicle heading angle
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Fig. 1 Coordinate system and geometry (both v<0 and <0 as
shown).

¥ is the angle between the horizontal projection of the velocity vec-
tor and north, measured in a clockwise direction in the horizontal
plane. We choose to limit the range of ¢ by —m < <. The grav-
ity acceleration g =9.81 m/s? is treated as a constant. Because only
unpowered flight is considered, the vehicle mass is also a constant.
The terms D and L are the aerodynamic drag and lift forces that are
dependent on the angle of attack «, altitude z, and velocity V. The
bank angle of the vehicle is 0.

By the definition of the coordinate system, the target is at the
origin. Suppose that W and I' ; are the heading angle and flight-path
angle, respectively, which define the desired impact direction of the
vehicle just before it reaches the target (compare Fig. 1). Therefore
the vehicle needs to achieve the following final conditions:

Xp=yr=2;=0 @)

vr=Ty ®)

Vr =Wy ®

One special case is when I' y = —90 deg (vertical impact). In such a

case the constraint (9) must be removed because v is not defined
for vertical impact. It should be stressed, however, that the vehicle’s
turning capability usually is the limiting factor for how much final
heading adjustment, as defined in Eq. (9), can be achieved. This is
because in the application scenarios under consideration the vehicle
is flying at hypersonic speeds. At such speeds the vehicle cannot
make significant heading changes in a short period of time. There-
fore the initial conditions for the terminal guidance phase should
be such that it is feasible for the vehicle to achieve the terminal
conditions (7-9) subject to its maneuverability constraints.

The function of the terminal guidance system is to determine the
direction of the flight, defined by y and v, to achieve the required
final conditions (7-9). We propose the following proportional-
navigation guidance laws for the commanded heading angle Yo
and flight-path angle ycom:

Veom = —A16 (10)
Yeom = —A2¢p (11)

where the guidance parameters A; and X, are taken to be constants in
this section unless otherwise specified. The horizontal guidance law
(10) is fully analyzed in Ref. 7, where it is assumed that the vehicle
can track the guidance command perfectly, that is, ¥ = ¥com. The
following two key properties of the guidance law (10) have been
established:

1) For arbitrary variations of V and |y | < 90 deg, and for any ini-
tial conditions except for 6(0) + ¥ (0) = 7 /2, the guidance law (10)
with A; > 1 ensures that s = /(x> + y?) — 0. The only exception of
6(0) + ¥ (0) = /2 corresponds to the case where the vehicle flies
away from the target along the LOS from the target to the vehicle,
a pathological case that will not happen in reality.

2) For all A, > 2, the trajectory of the vehicle on the xy plane will
converge to a straight line passing through the origin (target) with a
configuration of 6 + ¢ = —m /2.

The analysis of the vertical guidance law (11) will be greatly
simplified when the preceding second property is taken into con-
sideration. Suppose that a A, > 2 is used. After an initial transient
period, the three-dimensional trajectory of the vehicle will practi-
cally be confined in a vertical plane containing the origin, and the
velocity vector projection on the xy plane will be directed toward
the origin. In this vertical plane the kinematics of the vehicle can be
represented by

z=Vsiny (12)
s =—Vcosy (13)

where once again s =.,/(x?>+ y?) is the range-to-go. The reader
is referred to Fig. 1 for the geometry, with the reminder that the
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horizontal velocity component V cosy now points to the origin.
The elevation angle ¢ then is determined by

¢ =tan"'(z/s) 14)

Using Eqgs. (12) and (13), the derivative of ¢ can be readily found
to be

¢ =(V/r)sin¢ + ) 5)

where r = /(s + z2) = /(x> + y* + z?). The derivative of r is also
easily obtained

F=—Vcos(¢+7y) (16)
Define
n=¢+y 17

Then 5= ¢ + p. Again let us assume perfect tracking of the guid-
ance command so that y = y.om. By guidance law (11) and Eq. (15),

n=¢+y=>0=r)d==10=-a)(V/r)sinn (18
Dividing Eq. (16) by Eq. (18) results in

dr 1 7 cos
L= 2T (19)
dnp (A —1) sinpy
Upon integration, the preceding equation yields
r = c|sinp|/*2 =D (20)

where ¢>0 is an integration constant. Consider the case of
0 <n(0) <z for the moment. Substituting Eq. (20) into Eq. (18)
gives

=11 = A)V/cl(siny)2~2/C2=D @n

For any chosen A,, the sign of 7 will remain unchanged for all
t > 0. In particular 77 <0 and 7 will continue to decrease to zero if
Ay > 1. In such a case the solution of r in Eq. (20) indicates that
r — 0 when n — 0. Moreover, Eq. (21) also reveals that 7 — 0 as
n— 0if A, > 2. Because 77 = (1 — A,)¢, 1 — 0= ¢ — 0. Hence ¢
approaches a constant and y approaches the negative of the same
constant. This means that the trajectory in the vertical sz plane
converges to a straight line passing through the origin with y = —¢.
A similar analysis leads to the same conclusions in the case where
—m <n(0) <0.

Combining the preceding analysis and the results in Ref. 7, we
have the following conclusions for guidance laws (10) and (11):

1) For arbitrary variations of V, the guidance laws (10)
with A; > 1 and guidance law (11) with A, > 1 ensure that r =
V@2 +y +75) 0.

2) For A; > 2 and X, > 2, the three-dimensional trajectory of the
vehicle will converge to a straight line passing through the origin
(target) with the configuration of 6 + Y = —m /2 and ¢ + y =0.

Note that even though guidance laws (10) and (11) are decoupled
in two independent channels, the preceding analysis establishes the
simultaneous satisfaction of the three impact conditions in Eq. (7)
because r = /(x> + y? +z%) — 0 is the result. No less noteworthy
is the fact that the analysis and global convergence results of the
guidance laws (10) and (11) in the three-dimensional space do not
require any assumptions of small perturbations or constant velocity,
as is usually required in many other approaches.

It is not difficult to show that if A, is not a constant, but time-
varying, Eq. (19) can still be integrated by parts to arrive at a result
similar to Eq. (20). The difference is that the constant ¢ in Egs. (20)
and (21) is replaced by a positive function ce®, where

(n | sin n|
= —dA 22
§ Ga—1)2 (22)

The presence of the positive variable ¢* in Egs. (20) and (21) does
not alter the preceding analysis; therefore, the results remain valid

for a time-varying A,. A subtle point in this case is that the integral
in Eq. (22) is defined only for 1 7 0. This is just an artifact of using n
as the independent variable in integrating Eq. (19), not an indication
of an inherent problem with time-varying A,. In fact, employing the
standard stability theory,” one can show that starting from any initial
condition |ny| < 7, n — Oforany time-varying A, > 1inEq. (18). As
n — 0,7 from Eq. (16) will remain negative; hence, r — 0. A parallel
argument will apply to a time-varying A; in the lateral guidance law
(10). In conclusion the analysis and results just given are still correct
even for time-varying A, and X,. This conclusion will be the basis for
the validity of the guidance laws when A, and A, are continuously
updated by adaptation laws, as will be discussed in Sec. I'V.

III. Terminal Guidance Logic

A. Guidance Parameter Selections

Although other types of interceptor guidance approaches exist
that can target the typical final conditions in Eq. (7), few can conve-
niently handle the unique final conditions (8) and (9). Guidance laws
(10) and (11), on the other hand, offer simple ways to address these
requirements by properly selecting the guidance parameters A; and
Az. To see this, we integrate the guidance equation Veom = —A10
from £, to ¢ with the assumption of perfect tracking v = Vcom

Y — Yo = =210 — 6h) (23)

where 1 and 6, are the conditions at ¢y, which is the first instant
when the guidance law (10) is applied. Suppose that A, > 2. By the
discussion in Sec. II, the steady-state configuration is

gss + 1//55 = _7-[/2 (24)

Let v, = W as desired. Then the corresponding steady-state value
for 6 is

@f = —7T/2 — lIJf (25)

Replacing ¥ by ¥, and 6 by ® in Eq. (23), we can solve for the
unique value of A; required to achieve Yy = W,

A==V —Y0)/(Of —6) =1+ 3Y/(Of — ) (26)
where

890 = Yo — (—=7/2 — b)) @n

The quantity 81 just defined is simply the initial heading offset of
the vehicle with respect to the origin (target). To recap the discussion,
if the value of A, given by Eq. (26) is greater than two, this A; will
ensure that the final condition (9) is met. Of course the right-hand
side of Eq. (26) might be less than two at fp. When this happens,
a simple strategy will be discussed later to fly the vehicle until the
right-hand side of Eq. (26) is greater than two with the current value
of 6 and 8 in place of 6, and 81y. From this point on, the guidance
law (10) with the A; value calculated from Eq. (26) is applied.

A similar discussion applies to guidance law (11). Integrating
the guidance equation yeom = —A,¢ with the assumption of perfect
tracking y = Yeom gives

Y —vo=—h2(9 — o) (28)

where y, and ¢ are the initial conditions at #y (where it is understood
that this 7, is not necessarily the same f, as in the preceding case).
Suppose that A, > 2. By the analysis in Sec. Il, the trajectory will
converge to the configuration where y = —¢ — y; for some steady-
state value of yy. If we require that y,, =T/, Eq. (28) dictates that
the corresponding A, must satisfy

=Ty =)/ Ts + o) (29)

provided that A, > 2 is also met by the result. For steep impact (I"
close to or equal to —90 deg), the right-hand side of Eq. (29) will
become greater than two only after the vehicle gets close to the
target. Thus a strategy is again to evaluate continuously the value of
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the right-hand side of Eq. (29) with the current values of y and ¢ in
place of ¥, and ¢y. Once the computed value is greater than two, the
guidance law (11) is activated with this value for X, for the rest of
the flight. The A, so computed onboard will ensure the satisfaction
of the terminal condition (8) in the guidance.

B. Lateral Guidance Logic

The analysis in Sec. II suggests the sequence in which the terminal
guidance logic should work: the lateral guidance will first align the
heading of the vehicle nearly toward the target, then the longitudinal
guidance will work to bring the flight-path angle to the required
value and steer the vehicle to the target, while the lateral guidance
maintains the correct heading. The following lateral guidance logic
is designed for the heading alignment.

1) If 'y = —90 deg in the constraint (8) or constraint (9) is not
imposed, a constant A; > 2 is used throughout the entire trajectory in
the guidance law (10), which is responsible for the lateral steering.

2) If T'y = —90 deg, constraint (9) is imposed, and the A; calcu-
lated from Eq. (26) at the guidance initiation is less than two; the
bank angle of the vehicle is commanded by

Ocom = Umaxsgn(®_f - 9) (30)

where O is given in Eq. (25) and 6 is the current value of the vari-
able. The sign function sgn(x) = 1, when x > 0, and sgn(x) = —1,
when x < 0. The preset limit o, € (0, 90) deg is a maximum bank
angle to be used for turning. While the command (30) is applied,
the value of A; computed from Eq. (26) is continuously monitored
with 8y, and 6, replaced by their current values. At the moment
when the A; so computed is greater than two, the current time is set
to be #;, and the guidance logic is switched to step 3 for the rest of
the trajectory.

3) If 'y = —90 deg, constraint (9) is imposed, and the A; calcu-
lated from Eq. (26) at f, is greater than two; this A; is used in the
guidance law (10) for the rest of the terminal phase flight.

A discussion on the preceding lateral guidance logic is in order.
Step 1 is the simple case where the constraint (9) is not required.
Thus a A; > 2 in the guidance law (10) will suffice according to
the conclusions in Sec. II. When the constraint (9) is enforced, the
lateral guidance logic should always end in step 3, for the selection
of 1, described in step 3 ensures the satisfaction of condition (9).
The following analysis establishes that even if the trajectory starts
in step 2 the logic will eventually switch into step 3.

From the definition of & = tan~!(y/x) and Egs. (1) and (2), it is
easy to show that

d(®f —0) i V cos y sin§yr

dr s GD

where 8¢ = — (—m/2 — 6). From Egs. (6) and (31), we also
have
. Lsino V cosy sind
Sy = n vsindy (32)

mV cos s

Equation (31) indicates that the rate of ® ; — 6 is essentially pro-
portional to §v for small |6y/|. Hence ® ; — 6 is a slower variable,
and 8V is a faster variable with respect to any changes in o. It can
be shown that the bank-angle command law in Eq. (30) will always
increase the ratio

8y /(©f —0)

in all practically possible cases. Therefore as this ratio increases,
there will be an instant when it is greater than one, and the A;
computed from Eq. (26) becomes greater than two, where 8§y = §yr
and 6y = 6 are used in Eq. (26). Thus step 2 in the preceding logic will
eventually lead to step 3. This conclusion, of course, is contingent on
the condition that there is sufficient time for the vehicle to make the
turn. Alternatively, the misalignment in the velocity heading should
not be too large to overcome in a reasonable time period compared
with the flight time in the terminal phase.

| constant4, > 2 I

Determination of
initial A, (exit when
the calculated A,>2)

alculate initial 4,
—(¥. -
2= ( r v)

e,-0

No -

@ —2,| bank angle command:
/ O com = max SGN(O, —6)

Yes 1

| Initial value of A, found ‘

Adaptation law to | Current state
update A,

A 4 ‘

Lateral guidance law:

'/.,com = _'119

y

compute bank angle and
angle of attack commands

From longitudinal
guidance 7,

Fig. 2 Flowchart for the lateral guidance logic.

The bank angle given by Eq. (30) for the initial turning is neither
unique nor necessarily optimal for a given case. Depending on the
initial conditions, there can be different bank-angle profiles in this
initial turn, possibly even with opposite sign than the sign deter-
mined in Eq. (30), which can still allow the vehicle to meet its final
heading requirement (see an example in Sec. IV). But the determi-
nation of such alternate bank angle will require repeated numerical
integrations of the equations of motion for the vehicle. What the
strategy in Eq. (30) offers is simplicity and ensured eventual achieve-
ment of A; > 2 as computed from Eq. (26), a key requirement in our
guidance approach.

The preceding lateral guidance logic is included in the flow chart
in Fig. 2. The other parts of the chart, the computation of bank-
angle/angle-of-attack commands and further adaptation of A, will
be discussed in Secs. III.D and I'V.

C. Longitudinal Guidance Logic

Once the lateral guidance logic has nearly aligned the heading of
the vehicle to the target, the longitudinal guidance logic will begin to
work toward achieving impact conditions (7) and (8). As in the case
of lateral guidance, certain logic in addition to guidance law (11) will
be needed, which is mainly driven by condition (8) and the desire
to maximize the impact velocity. Recall that the analysis in Ref. 7
has shown that under guidance law (10) the angle i will approach
—1 /2 — 6 monotonically. For the purpose of longitudinal guidance
activation, the end of the heading alignment phase under step 1 or
3 in the lateral guidance logic can be marked by the condition

8y =¥ +O;+7/2 <e (33)

where ¢ > 0 is a small prespecified constant. When the constraint (9)
is not imposed, the preceding condition is replaced by

8y =¥ +0+n/2|<e (34
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The following sequential longitudinal guidance logic is devised:

1) From the beginning of the terminal guidance phase at t =0
to the end of the heading alignment phase, the vehicle will fly an
angle-of-attack profile defined by

Cltrans = & + (g — a*)e /T (35)

where « is the angle of attack of the vehicle at # = 0 and «* is the an-
gle of attack at which the vehicle achieves its maximum lift-to-drag
(L/D) ratio (a* can be a function of Mach number if needed). The
time constant 7' > 0 is a preselected parameter to ensure reasonably
fast transition from « to a*.

2) From the end of the heading alignment phase to the point where
the right-hand side of Eq. (29) becomes greater than two, a 1, <1
is used in guidance law (11).

3) After the instant when the A, calculated from Eq. (29) is greater
than two, this value of ), is used in guidance law (11) until the impact
(A, remains the same value in this period).

While the vehicle is turning in the heading alignment phase, the
objective for flying the transition angle-of-attack profile in Eq. (35)
is to preserve the energy of the vehicle so that the impact velocity
can be close to the maximum possible value. This maneuver turns
out to be quite similar to what an optimal trajectory would do, as will
be seen later. In the second step of the preceding logic, the vehicle
prepares for the final maneuver to the target. In this phase guidance
law (11) begins to drive the « to decrease from close to a* to a
negative value. (We assume that the magnitude of the bank angle is
limited within 90 deg.) The value of X, should be moderate in this
period, for an overly aggressive flight-path angle command could
result in a very late occurrence of A, > 2 from Eq. (29), leaving little
time for the final maneuver to satisfy the condition (8). Note that a
XAy < 1 can be used in this phase even though the analysis in Sec. 11
states that A, > 1 is needed for r — 0. This is because n =¢ + y is
typically positive and less than /2 (]y| is still rather small) in this
period. By examining Egs. (20) and (21), we can show that even
for A, < 1, n will increase and r will decrease, only not to zero. But
we only need r to decrease in this phase. The last phase fulfills the
requirement for the satisfaction of impact condition (8). Note that
lateral guidance law (10) with a constant A; > 2 remains in force
throughout all of the preceding longitudinal logic steps.

The preceding longitudinal guidance logic is incorporated in the
flow chart in Fig. 3. The other components of Fig. 3, including the
computation of bank-angle/angle-of-attack commands and adapta-
tion of A; and A,, will be discussed in the next section and Sec. I'V.

D. Bank-Angle and Angle-of-Attack Commands

The realization of the guidance commands from Eqs. (10) and (11)
can be through the modulations of bank angle o and angle of attack
o, which in turn will affect the vehicle dynamics equations (4-6). To
compute the required bank-angle command oo, and «-command
Ocom, We first find the required aerodynamic lift force to generate
the guidance commands Veom and Yeom from Egs. (5) and (6):

Leom/m =sgn(V Yeom + g cOS y)

X v (Vfreom €05 1)2 + (V Yeom + g €08 y)? (36)

The sign function in Eq. (31) determines whether a positive or
negative lift force is commanded (again, with the assumption of
lo| <90 deg). Let C,,, be the lift coefficient required to produce
L¢om. Therefore,

%P(Z)V2SrefCLc.,m = Lcom (37)

where p is the atmospheric density as a function of altitude z, and S,¢
the reference area of the vehicle. Based on the required C;,, found
in the preceding equation, the aerodynamic model of the vehicle is
iterated to solve for the corresponding angle of attack oo, at the
current Mach number.

_ The commanded bank angle ocon is calculated from Eq. (6) with
Y replaced by Yom and L replaced by Leom

Ocom = Sin71 (m Vl.bcom Cos V/Lcom) (38)
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Fig. 3 Flowchart for the longitudinal guidance logic.

In the case in which the value of C;_ computed from Eq. (37)
demands an «.., that is beyond the allowable range for the vehicle,
a scaling of the guidance commands can be done. Suppose that
L.« represents the largest lift force feasible at the current condition
[which can be in the positive or negative direction, depending on
the sign of (V Yeom + g cos y)]. Let both ¥¢on and yeom be scaled by
Kmax > 0 so that the total resulting lift force is equal t0 L. To
determine K., replace Yeom and Yeom by KmaxWeom and Kinax Veom
and Lcom by Lnax in Eq. (36). The value of K,y is the positive root
of the quadratic equation

K2 [V (0 cos®y + 72,) ] + Kmux(2V g Veom c0s ¥)

+ [gz cos’y — ifmx/mz] =0 (39)

A solution of K,x < 1indicates that the guidance commands exceed
the vehicle’s capability. The guidance commands in both channels
in such a case need to be scaled back by the same factor of K.
Alternatively, separate scaling of each channel could be performed.
Let Ky >0 and K, > 0 be the weightings on ¥om and Yeom, re-
spectively. Within the current limit of the lift, the emphasis of the
guidance can be directed in one channel at the expense of less guid-
ance effort in the other channel. For instance, we can express K, by
using Eq. (36) with the substitutions of Y¥com and Yeom by Ky Weom
and KV ]}com and Lcom by Lmax:

Ky = (1 Wconl V cos 1)y L2, /2 — (K, V i + g cO8 )2
(40)
The selection of a K, < Ky Will result in a Ky > Kpay, placing
more emphasis on the heading control than on flight-path angle
control. The reverse is also true.

In the event when |L om| > |Lmax|, and once the scaling factors
have been determined, the angle-of-attack and bank-angle com-
mands are still computed from Egs. (37) and (38), only with Lcom
replaced by L. and ¥ com by Ky ¥ com.
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E. Body Acceleration Commands

Another option for flight control systems to realize the guidance
commands generated by guidance laws (10) and (11) is to track
appropriate body acceleration commands. The advantage of this
design is that the feedback of the controlled variables (accelerations)
can be directly provided by accelerometers. The guidance system
will determine the acceleration commands to be tracked so that the
velocity vector is steered according to Egs. (10) and (11).

Define the wind frame that has its unit vectors as

i,=V/V 4D
Jo=(VxR)/|V xR| 42)
ky, =i, xj, (43)

where Vis the relative velocity vector and R is the radius vector from
the center of the Earth to the vehicle. The vehicle’s acceleration in
this velocity frame is given by

a=Vi,+yVcosyj, —yVk, (44)

The body frame fixed to the vehicle is defined in standard conven-
tion: the x; axis coincides with the body longitudinal axis, the z,
axis points down, and the y, axis completes the right-hand system.
With the assumption of zero sideslip, the coordinate transformation
from the velocity frame to the body frame consists of a sequence of
two rotations. The first is the rotation of a bank angle o about the
velocity vector (i, direction); the second an angle of attack « about
the y, axis. Using the coordinate transformation and the expression
of the acceleration in the wind frame in Eq. (44), we obtain the
corresponding commanded body accelerations (including gravity)
in the y;, and z,, axes as

Pyeom = l[/comv COS Y COS Ocom — )}cumv sin Ocom (45)

n = Veom SIN Weom — Yeom V COS Y COS Ueom SIN Ocom

Zcom
— Yeom V cos Qcom COS Ocom (46)

where ¥ com and Yeom are from guidance laws (10) and (11) and ocom
and oom are computed in Sec. III.D. The value of Vo is from
the right-hand side of Eq. (4) with & = t¢on, in calculating the drag
force term D. The command inputs to the control system in the inner
loop will thus be ny,. and n. . Note that only when a¢om 220 and

Zcom *
Ocom ~0cann,  andn, be approximated by

Zcom

Nyom = 1/)comV cosy 47)
Nzom = _)}comv (48)

IV. Adaptive Update of Guidance Parameters

Assuming perfect navigation data, the preceding proposed guid-
ance approach typically renders a precision of within 1 m on impact
position. The impact angle conditions can be met in many cases
within 1 deg. But in some other cases the errors could reach as high
as 3 to 4 deg. The possible sources of errors include the follow-
ing: 1) the guidance commands briefly exceed the maneuverability
of the vehicle; 2) the rate and acceleration limits on the guidance
commands are momentarily saturated; 3) the analyses are based
on steady-state conditions, yet the the flight is relatively short so
the steady state has not been fully achieved at the termination of
flight; 4) appreciable aerodynamic uncertainty exists, caused by ei-
ther modeling mismatch or the effects of ablation sustained during
entry flight; 5) the analyses of the guidance laws are based only
on point-mass dynamics, and the guidance parameter selections as-
sume perfect tracking of the guidance commands; 6) the guidance
commands are only updated at a finite rate. Adding to the sources
of errors in an operational environment will be limited navigation
resolution, winds, and modeling uncertainties. Most of these issues
are present to one degree or another in all other guidance and control
law synthesis efforts, and most of the time their influences on the
performance of the system are secondary. But in the case of very

high-precision applications such as discussed in this paper, their
effects become nontrivial.

In the guidance logic developed so far, the two parameters A;
and A, are constants once their values are determined [even though
by online calculations from Eqgs. (26) and (29)]. Recall that these
values are selected on the basis of satisfying the impact angle con-
ditions. But any of the preceding possible reasons can cause the
actual trajectory to be different; thus, the already determined con-
stant values of A and X, can no longer ensure the precision of the
impact angle conditions. The application scenarios considered in
this paper rule out the options of adopting more elaborate guidance
means or relying on intensive online computation for guidance com-
mand generation. Within the framework of the current approach, an
effective way to further enhance the precision is appropriate closed-
loop adaptation for A; and A,. We present in the following a novel
approach to establish the adaptive update laws for the problem at
hand.

Let us consider vertical guidance law (11) first. We will use the
altitude z as the independent variable for the update of A,. Note
that Eq. (11) has the same form whether the differentiation is with
respect to time or altitude (or any other independent variable). Treat
A, as a z-dependent function instead of a constant. Integrating both
sides of Eq. (11) once, the right-hand side by parts, one obtains

Y — Yo = —A¢ + Ao + / A, dz 49)
20

where zp is an arbitrary initial altitude, z a later altitude, and
Ay =dA,/dz. The subscript O indicates the values at zo. Suppose
that X, remains greater than two even though it is varying. From the
conclusion at the end of Sec. II, we know thatas z — 0, y + ¢ — 0.
With a given initial value for 1,, we want to find A so that y — I'y;
thus, ¢ — —I";. In addition, we will seek the simplest form of up-
date of X,, so that, A} is a constant. As a result, at z=0 we have
Ay =Xy — ZoA;. At =0, the substitution of these conditions into
Eq. (49) produces

0
Tp— o= (o — 20A)T 5 + Aaotpo + }‘/z/ ¢dz  (50)
20

Because ¢ = ¢y at zo and ¢ = —I"; at z =0, the integral in the pre-
ceding equation is further approximated by the well-known trape-
zoidal rule for quadratures:

0
1
/ ¢dz%§(l“f—¢o)20 (5D

Replace the integral in Eq. (50) by the preceding relationship, and
solve for A/,

_2[(1 — 20Ty — v — A20¢0]
20(¢ho +T'f)

Because zj is arbitrary, we can let zo be the current altitude at any
instant and drop all of the subscripts 0 in Eq. (52). Moreover, the
coefficient 2 in the preceding equation can be replaced by a constant
gain k, > 0 to allow the flexibility of tuning for desired adaptation
rate. Recall that the differentiation in the preceding equation is with
respect to the altitude z. Our final closed-loop adaptation law for A,
is

A=

(52)

dis [A=2)Tf —y —Xad] K2 Ay
L =22, L 27
@ @ +T)) ( o AfP) 9
where
Ap = (=Ty) — ¢, Ay =T;—vy (54)

If for any reason the adaptation with time as the independent variable
is preferred, the adaptation law is simply

Ay = (k2/2)V siny (o + Ay /Ag) (55)
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One would not be able to derive adaptation law (55) if time is used
as the independent variable at the outset.

In step 3 of the longitudinal guidance logic, the starting value
for X, is determined by Eq. (29) at the instant when the right-hand
side of Eq. (29) becomes greater than two. The subsequent values
of A, are then updated according to Egs. (53) or (55) instead of
remaining at the same constant. As the trajectory approaches the
desired configuration where A¢ = Ay =0, it can be shown by using
L’Hospital’s rule and the guidance law (11) that

lim ~ (Ay/Ad) — WV /P) = —x (56)

Ay —>0,A¢p —

Therefore, A, — 0 by the adaptation law (55), that is, the gain adap-
tation stops. The validity of the guidance law (11) under a varying
X, has been established at the end of Sec. II.

A similar process applied to the lateral guidance law (10) will
lead to the update law for 1, as

b _ (=)W =y = O+a/2] ki, A
as S0+ W, +7/2] - N
(57)
where

A =—(Vy+7/2) -6, Ay =W, — (58)
The parameter «; > 0 is a constant gain, and the derivative in the
adaptation law Eq. (57) is with respect to the range-to-go s. If time
is desired to be the independent variable, the adaptation law is then

= —(k1/s)V cosy (A + AY/AG) (59)

Again, it can be shown by using the L’Hospital rule and guidance
law (10) that as the trajectory approaches the final configuration
where A6 = Ay =0, we will have

lim O(Al///A@) — (Y /0) = —hy (60)

AB—0, Ay —

Thus, A; — 0 by Eq. (59), and the adaptation of A, stops. The adap-
tation of A, is not needed when the final heading constraint (9) is
not imposed because a constant A; > 2 is all that is required in this
case. This “bypass” is clearly shown in Fig. 2. The complete lateral
and longitudinal guidance logics including the guidance parameter
adaptation are illustrated in Figs. 2 and 3.

To avoid the singularities of adaptation laws (53) and (57) at
the origin where z =5 =0, the parameter adaptation is stopped at
a distance before the origin is reached without practical impact on
the precision, for the effects of the guidance parameter adaptation
are diminished as the vehicle gets very close to the target.

V. Simulations

The adaptive terminal guidance logic presented in Secs. II-1V is
applied in simulations to the guidance of a hypersonic lifting vehicle
of about 680 kg (1500 1b) in weight. The vehicle features a biconic
configuration with four control surfaces. The nonlinear aerodynamic
model of the vehicle is Mach and angle-of-attack—dependent. The
first scenario is for vertical impact on the target, and so the final
heading constraint (9) is not imposed. The second example involves
nonvertical impact and constrained final heading condition (9). The
initial conditions for the terminal-phase flight in both cases are those
at the end of the simulated entry trajectories of the vehicle. The con-
tinuities in both bank angle and angle of attack from their respective
values at the end of entry flight are preserved in the terminal-phase
trajectories. The atmospheric properties used in the simulations are
based on the 1976 U.S. Standard Atmosphere.'? The three-degrees-
of-freedom equations of motion over a rotating spherical Earth are
used to simulate the vehicle trajectories. The guidance commands
are generated at a 2-Hz rate and then subjected to maximum allow-
able magnitude, rate, and acceleration limits before they are applied
in the simulations. Even though the assumption of perfect tracking
of the guidance commands is made in the guidance law analysis,

the control limits and finite guidance update rate do cause imperfect
tracking in the simulations. Still, the feedback nature of the guid-
ance laws and the guidance parameter adaptation ensure excellent
results, as will be seen.

In both cases the corresponding open-loop optimal trajectories
are also found for comparison purposes. The performance index of
optimization is the maximization of the final velocity. The optimal
control problem is converted to a nonlinear programming problem
by parameterizing the time histories of bank angle and angle of at-
tack with piecewise linear functions of time. The equations of motion
are numerically integrated from the given initial conditions to obtain
the state histories and the final state in particular. The impact condi-
tion constraints (7), (8), and (9) (when it is imposed) are enforced.
A sequential-quadratic-programming algorithm in MATLAB® is
then used to solve the nonlinear-programming problem. The starting
guesses to the optimization problems are completely independent
of the simulated trajectories under the guidance laws.

A. Vertical Impact
In this case I' y = —90 deg in constraint (8), and constraint (9) is
ignored. The initial conditions are given as

so = 179.387 km, z0 = 40.002 km, 6y = —173.14 deg
Vo = 2304 m/s, Yo = —1.46deg, 8o = 5.19deg
oo = 34.58 deg, ag = 28.94 deg (61)

In this case a constant A, = 3 is used in lateral guidance law (10)
throughout the terminal phase (step 1 of the lateral guidance logic).
It is easy to verify that the given initial conditions do not make
A, > 2 when 1, is calculated from Eq. (29). Hence the longitudinal
guidance logic steps described in Sec. III.C are employed to steer
the trajectory in the vertical direction. For the vehicle model used,
the maximum L /D takes places at about a* =11 deg in the range
of Mach-number variations during the terminal guided flight. Thus
o =11degand T =25 s are used in Eq. (35). A value of 1, = 0.8 is
used in step 2 of the longitudinal guidance logic until the right-hand
side of Eq. (29) becomes greater than two. The simulation stops
when the altitude reduces to zero.

The final impact conditions from the simulation are

sy =0.05m, yr = —89.97deg

V; =750.7m/s (Mach 2.21) (62)

Even though the preceding precision level in miss distance and im-
pact angle might seem unrealistic because no navigation errors are
included, the simulations are only intended to demonstrate the ca-
pability of the guidance algorithm alone. In comparison to the pre-
ceding final velocity in the closed-loop simulation, the open-loop
optimal solution yields a final velocity of 811.1 m/s (Mach 2.38). In
the optimal solutions the bank-angle and angle-of-attack profiles are
not constrained by rate and acceleration limits, which contributes
(unrealistically) to the higher final velocity. Figure 4 shows the com-
parison of the variations of flight-path angle vs altitude and Mach
number vs range-to-go along the guided and optimal trajectories.
The three-dimensional flight paths for both the optimal and guided
trajectories are depicted in Fig. 5. Figure 6 contains the variations of
bank angle and angle of attack. It is observed that, despite two com-
pletely different approaches, the qualitative behaviors of the bank-
angle profiles along the optimal and guided trajectories, as well as
the angle-of-attack profiles, are remarkably similar. At about 45 s
into the terminal-phase flight, the right-hand side of Eq. (29) be-
comes greater than two, and A, is switched from 0.8 to this value.
The bank-angle and angle-of-attack histories in Fig. 6 clearly indi-
cate this change. Remarkably, the optimal bank-angle and optimal
angle-of-attack profiles in Fig. 6 exhibit similar transitions (a mo-
ment later) even though nothing in the formulation of the optimal
control problem forces such behaviors. The initial guesses to the
optimal profiles used in the numerical optimization are not at all
related to the guided trajectories.
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Fig. 7 Adaptation history of A\ for the vertical impact case.

Itis showninRef. 11 that in one-dimensional cases a proportional-
navigation guidance law with a proportional constant of 3 approx-
imates an optimal guidance law. The observations made here lead
to an interesting conjecture: when the final heading angle is not
constrained, the guidance logic developed in Sec. III for three-
dimensional flight might also be made to approximate the optimal
guidance solution by selecting appropriate values for the parameters
in the logic (e.g., A1, A2, &, and T).

The guidance parameter adaptation law (53) developed in Sec. IV
is also implemented in the simulation. (X, remains a constant of 3 in
this case because no final heading constraint is present.) A gain of
ky =4 is used. At about 87 s into the terminal phase, the right-hand
side of Eq. (29) yields a value greater than two. This is when step 3
of the longitudinal guidance logic is activated, and the adaptation
for A, by Eq. (53) begins at the same time. Figure 7 shows the
history of A,. The changes in A, are relatively small. The adaptation
stops about 1 s before impact. The high precision of the final flight-
path angle shown in the final conditions (62) is representative of the
effectiveness of the gain adaptation.

B. Nonvertical Impact
The terminal values in constraints (8) and (9) are specified to be

I'; = —60deg (63)
W, = 88deg (64)
The initial conditions are
so = 366.065 km, Zo = 45.060 km, 0o = —172.68 deg

Vo =2962.67m/s, Yo = —0.87 deg, 8o = —3.97deg

0o = 27.61 deg, ag = 31.74deg (65)

These initial conditions are from the same entry trajectory as in
the preceding case, but the entry flight is terminated earlier to al-
low more time for the terminal-phase guidance to meet the heading
constraint at the impact. The preceding initial conditions cause the
lateral guidance logic to start in step 2 of Sec. IIL.B and the lon-
gitudinal guidance logic in step 2 of Sec. III.C. Other simulation
settings and parameters are the same as in the preceding case.

The final conditions of the guided trajectory in this case are

s =0.03m, yr = —60.02 deg, Yy = 88.01deg

V; = 943.1m/s (Mach2.77) (66)

Figure 8 shows the three-dimensional trajectories. The ground tracks
in Fig. 8 indicate that the trajectories now approach the same target
from a direction different than in Fig. 5, a result of the final heading
angle constraint now enforced. The optimal solution in this case
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Fig. 9 Angle of attack and bank angle for the nonvertical impact case
with final heading constraint.

gives a final velocity of 1110.7 m/s (Mach 3.26). Figure 9 reveals
the reason why the guided trajectory in this case has appreciable per-
formance difference as compared to the optimal trajectory. Step 2
in the lateral guidance logic in this case commands initially a large
negative bank angle. The optimal bank-angle profile, on the other
hand, decides to stay nearly constant at about +25 deg for almost
90 s. This is a feature that can only be discovered with extensive
numerical searches required in an optimal solution. This key dis-
tinction contributes dominantly to the performance difference. As
discussed in Sec. II1.B, step 2 in the lateral guidance logic is designed
for its simplicity, not optimality. For some other initial conditions,
the lateral guidance logic can actually produce a trajectory much
closer to the optimal one. Nonetheless, we choose the current case
to illustrate the possible difference.

Another noteworthy phenomenon in the optimal bank-angle his-
tory in Fig. 9 is that the bank angle at the end is not zero. This means
that the optimal trajectory is still turning at the end, which makes
sense because for the same amount of heading change smaller bank
angle will be needed near the end where the velocity is lowest along
the trajectory. Without using large bank earlier, the trajectory is kept
aloft, thus minimizing the velocity loss. But nonzero bank angle at
the end also suggests that the vehicle’s heading angle is not in steady
state. Therefore the timing and the bank angle must match perfectly

2 1 1
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time (s)

Fig. 10 Adaptation history of \; for the nonvertical impact case with
final heading angle constraint.
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Fig. 11 Adaptation history of A, for the nonvertical impact case.

to achieve the specified final heading angle. Again this is something
that requires heavy computation and cannot be attained with simple
logic.

Parameter adaptation laws (53) and (57) with k| = k, =4 are re-
sponsible for the high accuracy in the final conditions of the im-
pact angles in this case. Without the adaptation, the final conditions
would have been y; =—58.75 deg and v, =88.36 deg, respec-
tively. In Fig. 10 the variation of A, is plotted. The execution of
step 2 of the lateral guidance logic [Eq. (30)] takes about 10 s at
the beginning of the terminal phase. After that, step 3 of the lateral
guidance logic becomes active, and this is when the adaptation of
Ay starts. The value of 1, stays nearly constant until step 2 (and then
step 3) of the longitudinal guidance logic begins to take effect. The
coupling effects of the longitudinal maneuvers cause the adaptation
law (57) to sense the need for final adjustments in the heading in
order to meet the constraint (64). The large variation of A, in Fig. 10
underscores the difficulty of changing the heading of a hyperveloc-
ity vehicle, even for relatively small corrections. Figure 11 contains
the adaptation history of A, for this case, which is comparatively
minor.

The remarkable possibility of achieving near optimality by the
guidance logic proposed in the case of unconstrained final heading
angle is even more evident in this example. For the same initial
conditions as in Eq. (65), suppose that only constraint (63) is re-
quired, not Eq. (64). The lateral guidance law is just Eq. (10) with a
constant A; = 3 throughout the trajectory. The guided trajectory this
time yields a final velocity of 1030.7 m/s with y, = —60.03 deg and
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without the final heading constraint.

sy =0.0004 m. In contrast, the optimal trajectory without the final
heading constraint (64) produces a final velocity of 1116.5 m/s. The
performance difference between the two is significantly smaller in
this case. Figure 12 illustrates the comparison of the angle-of-attack
and bank-angle histories. Except initially, the angle-of-attack pro-
files match quite well in about % of the flight. The bank-angle histo-
ries, on the other hand, are very close to each other throughout the
trajectory.

VI. Conclusions

The need to guide a hypersonic lifting vehicle in terminal phase
intended to impact a ground target with stringent specified impact
direction arises from a recent technology development effort. We
have found that an adaptive proportional-navigation guidance ap-
proach is effective to this problem and easy to implement. Our anal-
ysis establishes the theoretical attainment of the targeting conditions
by the guided trajectories without relying on linearization or other
simplifying assumptions. We provide closed-form conditions for the
online selection of the initial values of the guidance parameters for

satisfying the unique final impact angle requirements. For ensured
high precision in the impact angle conditions, continuous closed-
loop update of these parameters is necessary. For this purpose we
further develop nonlinear parameter adaptation laws. The guidance
logic developed is demonstrated to be accurate in three-degrees-of-
freedom simulations in which the full nonlinear point-mass dynam-
ics are included. In the absence of a final heading constraint, the
trajectories under the proposed guidance logic behave in a similar
fashion to optimal solutions that are generated off line.
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